Saturday, May 30, 2015

Finishing the Split-E

We've shared a few posts about Powell Handmade Custom flutes with a split-E, including a close-up on the mechanism and a quick snapshot from the finishing department.  You can find these posts by following this link to "Close-Up on Split-E" and this one to "Offset G and Split-E."

This week, we stopped by the finishing department as finisher Matt Keller was working on the split-E mechanism for an Aurumite 14k Handmade Custom.  So, we began to wonder... Are there differences between finishing flutes with and without the split-E? Matt told us that there are a few, and in general, a flute with a split-E takes longer to finish because it has more adjustments.  Of course, the adjustments are on the additional parts required for the split-E mechanism which you will see in the photos below:

Matt holds additional part of split-E mechanism.
The part turned over with arrows pointing to adjustments: 
felt (yellow arrow) and cork (red arrow).
Close up on cork adjustments.
Although it does take longer to finish a flute with a split-E, Matt feels that the independent motion of the mechanism's G keys can help with at least one challenge.  He explained that flutes without a split-E have two G keys that have to open and close together, as shown in the photo below:

Matt told us that the synchronized motion of these two keys can make padding them quite complicated!  With a split-E mechanism, the G keys are separate and move independently, which makes padding them a bit less challenging than when the keys move together.  To demonstrate this, Matt released one of the springs so that we could see one of the G keys open and one of them closed (as highlighted by the red arrows in the photo below):

In conclusion, we realized that there are differences in terms of materials (additional adjustments on split-E), parts, and the mechanics of the mechanisms, but the finishing process itself remains the same -- and the end result is a smoothly functioning mechanism!

Monday, May 25, 2015

Shaping the Lip Plate

This week, we stopped back into the headjoint room to meet with flute finisher and headjoint cutter, Lindsey McChord.  In a few previous posts, Lindsey explained some of the actual cutting techniques used in the headjoint cutting process.  You can review these posts by clicking here to read the "Cutting Headjoints" post and clicking here for "The Scraper Blade." 

In addition to the cutting, part of the headjoint making process involves shaping the lip plate, and this is done by exerting pressure on the plate to create the desired shape (or "slope" or "drop-off").  Lindsey uses a vise, which is a device that holds the headjoint in place and allows her to press areas of the lip plate to get the desired shape.  Although the vise is a piece of equipment, it is controlled not by a motor but simply by Lindsey turing a handle to push the wooden plate of the vise closer to the lip plate -- and this helps gently bend the metal lip plate to get the desired shape.  You'll see the process in the series of photos below:

First, Lindsey places a popsicle stick under the side of the lip plate that she does not want to bend.  This keeps that side completely in tact:

In the photo below, Lindsey shows us the space between the tubing and edge of the lip plate on the side that she needs to shape.  Ultimately, this space will decrease when the plate is bent with the vise.

Positioning the headjoint in the vise properly is crucial.  She told us that she positions it so that she can see straight down through the embouchure hole.

With her left hand, Lindsey gently holds the tubing of the headjoint, and with her right hand, she turns the handle of the vise.  The side of the lip plate closest to the handle is the side she is bending.  The opposite side of the lip plate (above her left hand) will not be bent because the popsicle stick is holding it in place.

Lindsey removes the headjoint from the vise to show us that the gap has become much less as she has bent that edge of the plate into the desired shape.

Lindsey checks the space between the edge of the lip plate and the headjoint tubing.  The popsicle stick comes into play once again as it serves as the perfect gauge for this measurement. She told us that although other commercial gauges have been made, she has tried them, and the popsicle stick really is the best.  It is the most durable, resilient, and accurate time and again.

Another nice thing about the popsicle stick is that it is wooden, so it has some give.  In the photo below, Lindsey demonstrates that she can also use it to bend parts of a lip plate very gently in the opposite direction.  In this case, she is working with a 14k lip plate.  She says that the stick is also a natural gauge for the amount of pressure she is exerting by hand.  "If the popsicle stick begins to split, I know I'm using too much pressure."

It's quite amazing to see the very simple and straightforward tools used for the lip plate shaping process.  Lindsey reminds us that, "It's because these headjoints truly are handcrafted.  There are no machines to do this -- it's all done by hand."  And, that is so very true.  With a little help from a metal vise to hold the headjoint, the actual pressure is controlled by Lindsey.  The measuring and assessment are done by hand, and then any additional "tweaks" are done by hand as well.

Friday, May 15, 2015

Shimming Pads

Shimming pads is something you may have heard about, but since most of us don't really take our flutes apart, it's sometimes hard to imagine exactly what is involved in the process.  Shimming is a technique that uses extremely thin materials like mylar to position and "seat" the pad properly. 

In the video below, we watch as flute finisher Matt Keller checks the pads on the footjoint of a flute he is padding:

In this next video, we watch as Matt shims a pad:

For more on shimming, click here to view the "Close-Up on Shimming" post from our Repair My Flute blog.

Friday, May 8, 2015

Verne Q. Powell - The Flutist

Verne Q. Powell

This week, we had the pleasure of corresponding with Verne Q. Powell's gradndaughter, Gail Powell Dearing.  She had written an article for the Winter 2013 edition of The Flutist Quarterly, detailing some very interested yet not widely known facts about her grandfather. In this excerpt, we learn about Mr. Powell's earliest days as a wind player...

Excerpt from "Second Wind: The Powell Spoon Flute at 102" (The Flutist Quarterly, Winter 2013)
By Gail Powell Dearing
It’s not well known that Powell was an accomplished flutist.  He started playing the ocarina when he was 8 years old, and at the age of 10, started a small fife and drum corps with a couple of his friends.  When he first heard a piccolo, he had to have one, so his brother bought him one for $3.40.  Powell said he shined his brother’s shoes for the rest of his life to repay him for the piccolo.  Then he expanded his group to six piccolos, six snare drums, and a bass drum; the group played at local ball games for the price of admission.

He bought his first Böhm flute when he was 17, and four years later purchased his “first good flute,” a Rundall-Carte wooden flute.  Largely self-taught, Powell had a reputation as a superior flute player long before he became better known as a fine flute maker.

Thus, his spoon flute was born of the combination of his skill as a jeweler and engraver with his love of music and facility with the instrument.

Saturday, May 2, 2015

Undercutting Wooden Tone Holes

This week, we stopped by the finishing department just as flute finisher Matt Keller was about to begin undercutting tone holes on a wooden flute.  In a previous post (which you can read by following this link), we learned that cutting wooden headjoints required mostly filing and sanding as opposed to the cutting and scraping techniques used on metal headjoints.  So, we asked Matt if a similar technique is used for undercutting wooden tone holes.  Come to find out, it does!

Matt told us that undercutting wooden tone holes is done with a very small file, which you will see in the photos below:

File is to the right of the footjoint.

Matt holding the file in his right hand.

There are two areas of the tone hole that he files, which we've indicated with blue arrows in the following photo:

Why are these two areas the locations for undercutting?  Well, Matt mentioned that these locations are aligned with the direction of the air flow through the flute.  Definitely makes sense when you visualize it!  As for the reason behind undercutting tone holes in general, flute finisher Karl Kornfeld added that undercutting, "reduces turbulence as the air flows through the flute."  Matt files very carefully, a little bit at a time, using extremely light pressure. The process is much easier to see in a video than a photo, so we captured a bit in the video below!